Activation of cardiac ryanodine receptors by the calcium channel agonist FPL-64176.
نویسندگان
چکیده
We investigated the possibility that the Ca(2+) channel agonist FPL-64176 (FPL) might also activate the cardiac sarcoplasmic reticulum (SR) Ca(2+) release channel ryanodine receptor (RyR). The effects of FPL were tested on single channel activity of purified and crude vesicular RyR (RyR2) isolated from human and dog hearts using the planar lipid bilayer technique. FPL (100-200 microM) increased single channel open probability (P(o)) when added to the cytoplasmic side of the channel (P(o) = 0.070 +/- 0.021 in control RyR2; 0.378 +/- 0.086 in 150 microM FPL, n = 9, P < 0.01) by prolonging open times and decreasing closed times without changing current magnitude. FPL had no effect on P(o) when added to the trans (luminal) side of the bilayer (P(o) = 0.079 +/- 0.036 in control and 0.103 +/- 0.066 in FPL, n = 4, no significant difference). The bell-shaped [Ca(2+)] dependence of [(3)H]ryanodine binding and of P(o) was altered by FPL, suggesting that the mechanism by which FPL increases channel activity is by an increase in Ca(2+)-induced activation at low [Ca(2+)] (without a change in threshold) and suppression of Ca(2+)-induced inactivation at high [Ca(2+)]. However, the fact that inactivation was restored at elevated [Ca(2+)] suggests a competitive interaction between Ca(2+) and FPL on inactivation. FPL had no effect on RyR skeletal channels (RyR1), where P(o) was 0.039 +/- 0.005 in control versus 0.030 +/- 0.006 in 150 microM FPL (no significant difference). These results suggest that, in addition to its ability to activate the L-type Ca(2+) channels, FPL activates cardiac RyR2 primarily by reducing the Ca(2+) sensitivity of inactivation.
منابع مشابه
L-type calcium channel agonist induces correlated depolarizations in mice lacking the β2 subunit nAChRs
Retinal waves are mediated in part by activation of nicotinic receptors containing the beta2 subunit. Mice deficient in beta2 containing nAChRs have maintained firing of action potentials but do not support correlated waves. As a result, beta2-/- mice have inhibited refinement of circuits within the retina as well as retinal projections to the CNS. Previously, we observed that correlated increa...
متن کاملTransmission of information from cardiac dihydropyridine receptor to ryanodine receptor: evidence from BayK 8644 effects on resting Ca(2+) sparks.
Coupling between L-type Ca(2+) channels (dihydropyridine receptors, DHPRs) and ryanodine receptors (RyRs) plays a pivotal role in excitation-contraction (E-C) coupling in cardiac myocytes, and Ca(2+) influx is generally accepted as the trigger of sarcoplasmic reticulum (SR) Ca(2+) release. The L-type Ca(2+) channel agonist BayK 8644 (BayK) has also been reported to alter RyR gating via a functi...
متن کاملModulation of single channels underlying hippocampal L-type current enhancement by agonists depends on the permeant ion.
The influx of calcium (Ca(2+)) ions through L-type channels underlies many cellular processes, ranging from initiation of gene transcription to activation of Ca(2+)-activated potassium channels. L-type channels possess a diagnostic pharmacology, being enhanced by the dihydropyridine BAY K 8644 and benzoylpyrrole FPL 64176. It is assumed that the action of these compounds is independent of the i...
متن کاملCalcium channel activation and self-biting in mice.
The L type calcium channel agonist (+/-)Bay K 8644 has been reported to cause characteristic motor abnormalities in adult mice. The current study shows that administration of this drug can also cause the unusual phenomenon of self-injurious biting, particularly when given to young mice. Self-biting is provoked by injecting small quantities of (+/-)Bay K 8644 directly into the lateral ventricle ...
متن کاملCa entry-independent effects of L-type Ca channel modulators on Ca sparks in ventricular myocytes
Copello JA, Zima AV, Diaz-Sylvester PL, Fill M, Blatter LA. Ca entry-independent effects of L-type Ca channel modulators on Ca sparks in ventricular myocytes. Am J Physiol Cell Physiol 292: C2129–C2140, 2007. First published February 21, 2007; doi:10.1152/ajpcell.00437.2006.—During the cardiac action potential, Ca entry through dyhidropyridine receptor L-type Ca channels (DHPRs) activates ryano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 283 1 شماره
صفحات -
تاریخ انتشار 2002